1489, and 1431 cm<sup>-1</sup>, the broad C-O stretching peak at 1278 cm<sup>-1</sup>, and the broad phenolic O-H stretching peak centered at 3342 cm<sup>-1</sup>. The small peaks between 2975 and 2850 cm<sup>-1</sup> are due to a small amount of hydrocarbon contamination. The top part of Figure 2 shows the spectrum for the 4-HTP surface after exposure to the silane. In the high-frequency region, the phenolic O-H band originally present at 3342 cm<sup>-1</sup> has disappeared, and stronger absorptions between 2975 and 2850 cm<sup>-1</sup> indicate the presence of the hydrocarbon portion of the silane coupling agent. In the low-frequency region, the somewhat enhanced aromatic ring stretches are still present at 1585 and 1486 cm<sup>-1,8</sup> but there is a new absorption at 918 cm<sup>-1</sup> arising from the symmetric Siphenoxy stretching mode of the reaction product, Scheme I.<sup>9</sup> The two overlapping bands at 1277 and 1260 cm<sup>-1</sup> result from the asymmetric Si-phenoxy stretch and the symmetric H<sub>3</sub>C-Si-CH<sub>3</sub> deformation, respectively.9

Ellipsometric results<sup>4</sup> are in accord with the SAW and FTIR-ERS experiments. The average measured thickness of three vapor-deposited 4-HTP layers is  $5.8 \pm 0.8$  Å, which increases to  $12.5 \pm 1.2$  Å after reaction with  $[CH_3(CH_2)_7](CH_3)_2SiCl$ . Similar results are found for surface-confined 4-ATP before  $(7.4 \pm 0.9)$ Å) and after (12.1  $\pm$  1.2 Å) exposure to [CH<sub>3</sub>(CH<sub>2</sub>)<sub>7</sub>](CH<sub>3</sub>)<sub>2</sub>SiCl. These data show that both reactants and products are present at approximately monolayer coverage. Since we do not know the orientation of the adsorbates, it is difficult to infer theoretical thicknesses for the organic monolayers, but the trend toward thicker layers is expected.

To summarize, we have demonstrated that well-characterized reactions occur between surface-confined monolayers and vapor-phase reactants at atmospheric pressure. These reaction conditions provide an important link between solution and ultrahigh-vacuum studies. Real-time SAW experiments, FTIR-ERS, and ellipsometry demonstrate that the vapor-phase coupling reactions between surface-confined 4-HTP or 4-ATP and [CH<sub>3</sub>-(CH<sub>2</sub>)<sub>7</sub>](CH<sub>3</sub>)<sub>2</sub>SiCl result in monolayer coverages of stoichiometric reaction products. Moreover, experiments with other coupling agents,  $[CH_3(CH_2)_n](CH_3)_2SiCl (n = 0, 2)$ , show appropriate attenuations in mass, methylene stretching absorption intensity, and thickness, further supporting our conclusions. At present, we have no evidence that either the reactants or products are highly organized, but experiments are in progress to extend this study to other vapor-phase coupling reactions that may lead to such structures.

Acknowledgment. The excellent technical assistance of Barbara L. Wampler is gratefully acknowledged. Experiments at the University of New Mexico are supported by the Sandia-University Research Program (DOE) and the National Science Foundation (CHE-90146566). R.M.C. gratefully acknowledges a Society of Analytical Chemists of Pittsburgh Starter Grant Award and an Office of Naval Research Young Investigator Award. Research at Sandia National Laboratories is supported by the U.S. DOE under Contract No. DE-AC04-76DP00789.

Registry No. Au, 7440-57-5; [CH<sub>3</sub>(CH<sub>2</sub>)<sub>7</sub>](CH<sub>3</sub>)<sub>2</sub>SiCl, 18162-84-0; 4-HTP, 637-89-8; 4-ATP, 1193-02-8.

Supplementary Material Available: Details of the SAW, ellipsometry, and synthesis and spectral characterization of solution analogues of the surface-confined reactants and products (5 pages). Ordering information is given on any current masthead page.

## **Molecular Orbital Theory Calculations of Aqueous** Solvation Effects on Chemical Equilibria

Christopher J. Cramer\*

U.S. Army Chemical Research Development and Engineering Center Aberdeen Proving Ground, Maryland 21010-5423

Donald G. Truhlar\*

Department of Chemistry, Supercomputer Institute, and Army High-Performance Computing Research Center University of Minnesota Minneapolis, Minnesota 55455-0431 Received July 16, 1991

Molecular modeling techniques<sup>1</sup> have advanced to the point where computational chemistry can predict the relative energies of many interesting structures, intermediates, and possible reaction products. Parametric models<sup>2-4</sup> based on semiempirical molecular orbital theory are especially useful for treating substituent effects and evaluating competing structures; for reactions in aqueous solution, though, there is considerably uncertainty about the applicability of the calculated results since the computational models do not include the solvent. One way to improve on this situation is to combine these models with the local-field SCF approach.<sup>5</sup> In this spirit, we have recently proposed and calibrated a new parameterized model,<sup>6</sup> called AM1-SM1, in which an aqueous "solvation model" (SM1) is added to the Fock operator from neglect-of-diatomic-differential-overlap<sup>7</sup> semiempirical molecular orbital theory using the Austin model 1 (AM1)<sup>3</sup> parameterization for the solute. SM1 treats the solvent as a bulk continuum with a generalized Born model<sup>8,9</sup> with dielectric screening for the polarization energy (we use a model in which the solute cavity from which dielectric is excluded is composed of superimposed spheres<sup>9,10</sup>) and with surface tension terms<sup>11</sup> (based on the solvent-accessible surface area<sup>12</sup>) for cavity and dispersion effects. Parameters are available<sup>6</sup> for 298 K for solutes containing H, C, N, O, F, S, Cl, Br, and I. The theory is especially promising because it requires considerably less in the way of computational resources than simulations with explicit inclusion of a large number of water molecules,<sup>13</sup> yet at the same time it allows for solventinduced changes in the solute charge distribution.

Here we report the first tests of AM1-SM1 for the effect of solvation on reactive equilibria, in particular for acid-base proton transfer reactions, prototropic tautomerizations, and the rotameric isomerization of the peptide linkage. We define

$$\Delta \Delta G^{\circ}_{g \to aq} = \Delta G^{\circ}_{aq} - \Delta G^{\circ}_{g} \tag{1}$$

where  $\Delta G^{\circ}$  is the standard-state (1 M) free energy change for

<sup>(8)</sup> Enhancements in ring mode absorptions after reaction are most likely the result of orientational changes that are consistent with the surface selection rules for FTIR-ERS; see: (a) Greenler, R. G. J. Chem. Phys. 1966, 44, 310. (b) Greenler, R. G. J. Chem. Phys. 1969, 50, 1963. (c) Porter, M. D. Anal. Chem. 1988, 60, 1143A.

<sup>(9)</sup> The band assignments for surface-confined HS(C<sub>6</sub>H<sub>4</sub>)OSi(CH<sub>3</sub>)<sub>2</sub>[(C- $H_2$ / $CH_3$ ] have been confirmed by comparison to an authentic sample of  $(C_6H_3)OSi(CH_3)_2[(CH_2)_7CH_3]$ . Details of the synthesis and the NMR and FTIR spectral analyses are given in the supplementary material. (a) An-derson, D. R. In Analysis of Silicones; Smith, A. L., Ed.; Wiley: New York, 1974; Chapter 10. (b) Bellamy, L. J. The Infra-red Spectra of Complex Molecules, 3rd ed.; Chapman and Hall: London, 1975; Chapter 20.

<sup>(1)</sup> Naray-Szabo, G.; Surjan, P. R.; Angyan, J. G. Applied Quantum Chemistry; Reidel: Dordrecht, 1987. (2) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4899, 4907.

<sup>(3) (</sup>a) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902. (b) Dewar, M. J. S.; Dieter, K. M. J.

Am. Chem. Soc. 1986, 108, 8075. (4) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209, 221.

<sup>(5)</sup> For reviews, see: (a) Tapia, O. In Quantum Theory of Chemical Reactions; Daudel, R., Pullman, A., Salem, L., Viellard, A., Eds.; Reidel: Reactions, Dauder, R., Fulfman, A., Satelli, L., Vienad, A., Eds., Reidel.
Dordrecht, 1980; Vol. 2, p 25. (b) Tomasi, J.; Alagona, G.; Bonaccorsi, R.;
Ghio, C. In Modelling of Structure and Properties of Molecules; Maksič, Z.
B., Ed.; Horwood: Chichester, 1987; p 330.
(6) Cramer, C. J.; Truhlar, D. G. J. Am. Chem. Soc., in press.
(7) (a) Pople, J. A.; Santry, D. P.; Segal, G. A. J. Chem. Phys. 1965, 43,
(120) (b) Packa A.; Packada D. J. Appendix of Molecular Oxidation (Chichester)

<sup>5129. (</sup>b) Pople, J. A.; Beveridge, D. L. Approximate Molecular Orbital Theory; McGraw-Hill: New York, 1970.

<sup>(8) (</sup>a) Hoitjink, G. J.; de Boer, E.; van der Meij, P. H.; Weijland, W. P. Recl. Trav. Chim. Pays-Bas 1956, 75, 487. (b) Peradejordi, Cah. Phys. 1963, 17, 393.

<sup>(9)</sup> Still, W. C.; Tempczak, A.; Hawley, R. C.; Hendrickson, T. J. Am. Chem. Soc. 1990, 112, 6127.

<sup>(10) (</sup>a) Miertius, S.; Scrocco, E.; Tomasi, J. J. Chem. Phys. 1981, 55, 117. (b) Bonaccorsi, R.; Cimiraglia, R.; Tomasi, J. J. Comput. Chem. 1983, 4, 567.
(11) Hermann, R. B. J. Phys. Chem. 1972, 76, 2754.
(12) Lee, B.; Richards, F. M. J. Mol. Biol. 1971, 55, 379.

 <sup>(13) (</sup>a) Watts, R. O.; Clementi, E.; Fromm, J. J. Chem. Phys. 1974, 61,
 2550. (b) Beveridge, D. L.; DiCapua, F. M. Annu. Rev. Biophys. Biophys.
 Chem. 1989, 18, 431. (c) Jorgensen, W. L. Chemtracts: Org. Chem. 1991, 4.91.

Table I. Proton Transfer Free Energy Changes on Solvation

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              | ΔΔG <sub>s→aq</sub> ,<br>kcal/mol |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------|-------|
| reactionexpt <sup>4</sup> SM1 $NH_4^+ + aniline \rightarrow NH_3 + aniline H^+$ 12.919.0 $NH_4^+ + MeNH_2 \rightarrow NH_3 + MeNH_3^+$ 9.611.3 $NH_4^+ + MeNH_2 \rightarrow NH_3 + Me_NH_2^+$ 17.620.6 $NH_4^+ + Me_2NH \rightarrow NH_3 + Me_2NH_2^+$ 17.620.6 $NH_4^+ + Me_2N \rightarrow NH_3 + Me_2NH_2^+$ 17.620.6 $NH_4^+ + PhCO_2^- \rightarrow NH_3 + PhCO_2H$ 137.3146.4 $NH_4^+ + PhC^- \rightarrow NH_3 + AcOH$ 146.9151.7 $NH_4^+ + PhC^- \rightarrow NH_3 + CpH^b$ 141.1143.0 $NH_4^+ + PhC^- \rightarrow NH_3 + CpH^b$ 137.6137.5aniline.H^+ + pyridine $\rightarrow$ aniline + MeNH_3^+9.611.3aniline.H^+ + Me_2N $\rightarrow$ aniline + Me_3NH_217.620.6aniline.H^+ + Me_3N $\rightarrow$ aniline + Me_3NH_217.620.6aniline.H^+ + PhCO_2^- $\rightarrow$ aniline + PhCO_2H124.4127.4aniline.H^+ + PhCO_2^- $\rightarrow$ aniline + CpH128.2124.0aniline.H^+ + PhCO_2^- $\rightarrow$ aniline + PhCO_2H122.718.5MeNH_3^+ + pyridine $\rightarrow$ MeNH_2 + Me_2NH_2^+8.09.4MeNH_3^+ + Me_2NH $\rightarrow$ MeNH_2 + Me_2NH_2^+10.6131.7MeNH_3^+ + PhCO_2^- $\rightarrow$ MeNH_2 + PhCO_2H127.7135.2MeNH_3^+ + PhCO_2^- $\rightarrow$ MeNH_2 + AcOH137.3140.4MeNH_3^+ + PhCO_2^- $\rightarrow$ MeNH_2 + AcOH137.6131.7MeNH_3^+ + PhCO_2^- $\rightarrow$ MeNH_2 + AcOH137.6131.7MeNH_3^+ + PhCO_2^- $\rightarrow$ MeNH_2 + AcOH137.6131.7MeNH_3^+ + PhCO_2^- $\rightarrow$ MeNH_2 + CPH128.0126.2pyridine.H^+ + Me_3N $\rightarrow$ pyridine + Me_3NH^+ $-1.4$ 2.9 </th <th></th> <th></th> <th>AM1-</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                   | AM1-  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | reaction                                                                                     | expt <sup>a</sup>                 | SM1   |
| $\begin{split} NH_4^+ + MeNH_2 &\to NH_3 + MeNH_3^+ & 9.6 & 11.3 \\ NH_4^+ + Me_2NH \to NH_3 + pyridineH^+ & 25.1 & 25.9 \\ NH_4^+ + Me_2NH \to NH_3 + Me_2NH_2^+ & 17.6 & 20.6 \\ NH_4^+ + Me_2N \to NH_3 + Me_2NH_4^+ & 23.7 & 28.8 \\ NH_4^+ + PhCO_2^- \to NH_3 + PhCO_2H & 137.3 & 146.4 \\ NH_4^+ + AcO^- \to NH_3 + AcOH & 146.9 & 151.7 \\ NH_4^+ + Ph^- \to NH_3 + PhOH & 141.1 & 143.0 \\ NH_4^+ + Cp^- \to NH_3 + CpH^b & 137.6 & 137.5 \\ aniline H^+ + MeNH_2 \to aniline + MeNH_3^+ & 9.6 & 11.3 \\ aniline H^+ + pyridine \to aniline + Me_2NH_4^+ & 17.6 & 20.6 \\ aniline H^+ + Me_2NH \to aniline + Me_3NH^+ & 23.7 & 28.8 \\ aniline H^+ + Me_3N \to aniline + Me_3NH^+ & 23.7 & 28.8 \\ aniline H^+ + Me_2NH \to aniline + Me_3NH^+ & 23.7 & 28.8 \\ aniline H^+ + PhO^- \to aniline + AcOH & 134.0 & 132.6 \\ aniline H^+ + PhO^- \to aniline + CpH & 124.7 & 118.5 \\ aniline H^+ + PhO^- \to aniline + CpH & 124.7 & 118.5 \\ MeNH_3^+ + pyridine \to MeNH_2 + Me_2NH_2^+ & 8.0 & 9.4 \\ MeNH_3^+ + Me_2NH \to MeNH_2 + Me_2NH_2^+ & 14.1 & 17.4 \\ MeNH_3^+ + Me_2NH \to MeNH_2 + Me_2NH_2^+ & 13.6 & 131.7 \\ MeNH_3^+ + Me_2NH \to MeNH_2 + PhO_2H & 127.7 & 135.2 \\ MeNH_3^+ + Me_3N \to MeNH_2 + PhO_2H & 127.7 & 135.2 \\ MeNH_3^+ + Me_3N \to MeNH_2 + PhO_2H & 127.7 & 135.2 \\ MeNH_3^+ + PhO^- \to MeNH_2 + PhO & 131.6 & 131.7 \\ MeNH_3^+ + PhO^- \to MeNH_2 + PhO & 131.6 & 131.7 \\ MeNH_3^+ + PhO_2^- \to MeNH_2 + PhO & 128.0 & 126.2 \\ pyridineH^+ + Me_3N \to MeNH_2 + PhO & 128.0 & 126.2 \\ pyridineH^+ + AcO^- \to MeNH_2 + PhO & 112.5 & 111.6 \\ MeNH_3^+ + PhO_2^- \to MeNH_2 + PhO_2 & 112.5 & 111.6 \\ MeNH_3^+ + PhO_2^- \to MeNH_2 + PhO_2 & 12.0 & 126.6 \\ pyridineH^+ + AcO^- \to Me_3N + PhO_2 & 12.0 & 12.5 \\ MeNH_3^+ + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $NH_4^+$ + aniline $\rightarrow NH_3$ + aniline $H^+$                                        | 12.9                              | 19.0  |
| $\begin{split} & NH_4^+ + pyridine \to NH_3 + pyridine H^+ & 25.1 & 25.9 \\ & NH_4^+ + Me_2NH \to NH_3 + Me_2NH_2^+ & 17.6 & 20.6 \\ & NH_4^+ + Me_2N \to NH_3 + Me_2NH^+ & 23.7 & 28.8 \\ & NH_4^+ + PhCO_2^- \to NH_3 + PhCO_2H & 137.3 & 146.4 \\ & NH_4^+ + AcO^- \to NH_3 + AcOH & 146.9 & 151.7 \\ & NH_4^+ + CP^- \to NH_3 + PhOH & 141.1 & 143.0 \\ & NH_4^+ + CP^- \to NH_3 + CPH^b & 137.6 & 137.5 \\ & aniline H^+ + Me_2NH_2 \to aniline + MeNH_3^+ & 9.6 & 11.3 \\ & aniline H^+ + Me_2NH \to aniline + Me_3NH^+ & 25.1 & 25.9 \\ & aniline H^+ + Me_3N \to aniline + Me_3NH^+ & 23.7 & 28.8 \\ & aniline H^+ + Me_2NH \to aniline + Me_3NH^+ & 23.7 & 28.8 \\ & aniline H^+ + PhO_2^- \to aniline + Me_3NH^+ & 23.7 & 28.8 \\ & aniline H^+ + PhO_2^- \to aniline + Me_3NH^+ & 23.7 & 28.8 \\ & aniline H^+ + PhO_2^- \to aniline + Me_3NH^+ & 23.7 & 28.8 \\ & aniline H^+ + PhO_2^- \to aniline + CPH & 124.4 & 132.6 \\ & aniline H^+ + PhO_2^- \to aniline + CPH & 124.4 & 132.6 \\ & aniline H^+ + PhO_2^- \to aniline + CPH & 128.2 & 124.0 \\ & aniline H^+ + PhO^- \to aniline + CPH & 128.2 & 124.0 \\ & aniline H^+ + PhO^- \to MeNH_2 + Me_3NH^+ & 14.1 & 17.4 \\ & MeNH_3^+ + Me_3N \to MeNH_2 + Me_3NH^+ & 14.1 & 17.4 \\ & MeNH_3^+ + Me_3N \to MeNH_2 + PhOC_4H & 137.3 & 140.4 \\ & MeNH_3^+ + PhO^- \to MeNH_2 + CPH & 131.6 & 131.7 \\ & MeNH_3^+ + PhO_2^- \to MeNH_2 + CPH & 131.6 & 131.7 \\ & MeNH_3^+ + CP^- \to MeNH_2 + CPH & 131.6 & 131.7 \\ & MeNH_3^+ + PhO_2^- \to MeNH_2 + CPH & 112.2 & 120.6 \\ & pyridine H^+ + Me_3N \to Me_3NH^+ & -14.4 & 2.9 \\ & pyridine H^+ + Me_3N \to Me_3NH^+ & 14.2 & 2.9 \\ & pyridine H^+ + PhO_2^- \to Me_3NH + PhO_2H & 112.5 & 111.6 \\ & MeNH_3^+ + Ph$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $NH_4^+ + MeNH_2 \rightarrow NH_3 + MeNH_3^+$                                                | 9.6                               | 11.3  |
| $\begin{split} NH_4^+ + Me_2NH &\to NH_3 + Me_3NH_2^+ & 17.6 & 20.6 \\ NH_4^+ + Me_3N \to NH_3 + Me_3NH_4^+ & 23.7 & 28.8 \\ NH_4^+ + PhCO_2^- \to NH_3 + PhCO_2H & 137.3 & 146.4 \\ NH_4^+ + AcO^- \to NH_3 + PhOH & 141.1 & 143.0 \\ NH_4^+ + Cp^- \to NH_3 + CpH^b & 137.6 & 137.5 \\ aniline H^+ + MeNH_2 \to aniline + MeNH_3^+ & 9.6 & 11.3 \\ aniline H^+ + Me_3NH \to aniline + Me_3NH_4^+ & 17.6 & 20.6 \\ aniline H^+ + Me_3N \to aniline + Me_3NH_4^+ & 17.6 & 20.6 \\ aniline H^+ + Me_3N \to aniline + Me_3NH_4^+ & 23.7 & 28.8 \\ aniline H^+ + Me_3N \to aniline + Me_3NH_4^+ & 23.7 & 28.8 \\ aniline H^+ + AcO^- \to aniline + AcOH & 134.0 & 132.6 \\ aniline H^+ + PhO_2^- \to aniline + CpH & 124.1 & 124.4 & 127.4 \\ aniline H^+ + PhO_7 \to aniline + CpH & 124.2 & 124.0 \\ aniline H^+ + Me_3N \to MeNH_2^+ + Me_3NH_4^+ & 15.5 & 14.6 \\ MeNH_3^+ + pyridine \to MeNH_2^+ + Me_3NH_4^+ & 14.1 & 17.4 \\ MeNH_3^+ + Me_3N \to MeNH_2^+ + Me_3NH_4^+ & 14.1 & 17.4 \\ MeNH_3^+ + Me_3N \to MeNH_2^+ + AcOH & 131.6 & 131.7 \\ MeNH_3^+ + PhO_7^- \to MeNH_2^+ + PhOH & 131.6 & 131.7 \\ MeNH_3^+ + PhO_7^- \to MeNH_2^+ + PhOH & 131.6 & 131.7 \\ MeNH_3^+ + PhO_7^- \to MeNH_2^+ + PhOH & 131.6 & 131.7 \\ MeNH_3^+ + PhO_7^- \to MeNH_2^+ + PhOH & 131.6 & 131.7 \\ MeNH_3^+ + PhO_7^- \to MeNH_2^+ + PhOH & 131.6 & 131.7 \\ MeNH_3^+ + PhO_7^- \to MeNH_2^+ + PhO & 128.0 & 126.2 \\ pyridine H^+ + Me_3N \to Me_2NH_4^- + Me_3NH_4^- & -1.4 & 29 \\ pyridine H^+ + PhO_7^- \to Me_3NH_4^+ & 1.4 & 29 \\ pyridine H^+ + PhO_7^- \to Me_3NH_4^+ & 116.0 & 117.1 \\ pyridine H^+ + PhO_7^- \to Me_3NH_4^+ & 125.5 & 122.4 \\ Me_2NH_2^+ + PhO_7^- \to Me_3NH_4^+ & HO_3^- & 112.5 \\ Me_2NH_2^+ + PhO_7^- \to Me_3NH_4^+ & HO_3^- & 123.5 & 122.4 \\ Me_3NH_4^+ + PhO_7^- \to Me_3NH_4^+ & HO_3^- & 112.5 & 111.6 \\ Me_3NH_4^+ + PhO_7^- \to Me_3N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $NH_4^+ + pyridine \rightarrow NH_3 + pyridine H^+$                                          | 25.1                              | 25.9  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $NH_4^+ + Me_2NH \rightarrow NH_3 + Me_2NH_2^+$                                              | 17.6                              | 20.6  |
| $\begin{split} & NH_4^+ + PhCO_2^- \to NH_3 + PhCO_2H & 137.3 & 146.4 \\ & NH_4^+ + AcO^- \to NH_3 + AcOH & 146.9 & 151.7 \\ & NH_4^+ + PhO^- \to NH_3 + PhOH & 141.1 & 143.0 \\ & NH_4^+ + Cp^- \to NH_3 + CpH^b & 137.6 & 137.5 \\ & aniline \cdot H^+ + MeNH_2 \to aniline + MeNH_3^+ & 9.6 & 11.3 \\ & aniline \cdot H^+ + MeNH_2 \to aniline + MeNH_3^+ & 9.6 & 11.3 \\ & aniline \cdot H^+ + MeNH_2 \to aniline + MeNH_3^+ & 25.1 & 25.9 \\ & aniline \cdot H^+ + Me2NH \to aniline + Me_2NH_2^+ & 17.6 & 20.6 \\ & aniline \cdot H^+ + Me2NH \to aniline + Me_3NH^+ & 23.7 & 28.8 \\ & aniline \cdot H^+ + MeCO_2^- \to aniline + AcOH & 134.0 & 132.6 \\ & aniline \cdot H^+ + PhCO_2^- \to aniline + CpH & 128.2 & 124.0 \\ & aniline \cdot H^+ + PhO^- \to aniline + CpH & 128.2 & 124.0 \\ & aniline \cdot H^+ + PhO^- \to aniline + CpH & 128.2 & 124.0 \\ & aniline \cdot H^+ + Mo2N \to MeNH_2 + Me_2NH_2^+ & 8.0 & 9.4 \\ & MeNH_3^+ + Me_3N \to MeNH_2 + Me_3NH^+ & 14.1 & 17.4 \\ & MeNH_3^+ + Me_3N \to MeNH_2 + Me_3NH^+ & 14.1 & 17.4 \\ & MeNH_3^+ + Me_3N \to MeNH_2 + PhCO_2H & 127.7 & 135.2 \\ & MeNH_3^+ + AcO^- \to MeNH_2 + PhOH & 131.6 & 131.7 \\ & MeNH_3^+ + AcO^- \to MeNH_2 + PhOH & 131.6 & 131.6 \\ & 131.6 & 131.6 & 131.6 \\ & 131.6 & 131.6 & 131.6 \\ & MeNH_3^+ + PhO_2^- \to pyridine + Me_3NH^+ & -1.4 & 2.9 \\ & pyridine \cdot H^+ Me_3N \to pyridine + Me_3NH^+ & -1.4 & 2.9 \\ & pyridine \cdot H^+ Me_3N \to Me_2NH + PhOO_2H & 112.2 & 120.6 \\ & Me_2NH_3^+ + PhO_2^- \to pyridine + AcOH & 121.8 & 125.8 \\ & pyridine \cdot H^+ PhO_2^- \to Me_3NH + PhOO_2H & 119.7 & 125.8 \\ & Me_2NH_2^+ + PhO_2^- \to Me_3NH + PhO_2H & 119.7 & 125.8 \\ & Me_2NH_2^+ + PhO_2^- \to Me_3NH + PhO_2H & 119.7 & 125.8 \\ & Me_3NH^+ + PhO_2^- \to Me_3NH + PhO_2H & 119.7 & 125.5 & 122.4 \\ & Me_3NH_2^+ + PhO_2^- \to Me_3NH + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $NH_4^+ + Me_3N \rightarrow NH_3 + Me_3NH^+$                                                 | 23.7                              | 28.8  |
| $\begin{split} & NH_4^+ + AcO^- \to NH_3 + AcOH & 146.9 & 151.7 \\ & NH_4^+ + PhO^- \to NH_3 + PhOH & 141.1 & 143.0 \\ & NH_4^+ + PhO^- \to NH_3 + CpH^b & 137.6 & 137.6 \\ & aniline + H^+ + MeNH_2 \to aniline + MeNH_3^+ & 9.6 & 11.3 \\ & aniline + H^+ + meNH_2 \to aniline + MeNH_3^+ & 25.1 & 25.9 \\ & aniline + H^+ + Me_2NH \to aniline + Me_2NH_2^+ & 17.6 & 20.6 \\ & aniline + H^+ + PhO_2^- \to aniline + Me_3NH^+ & 23.7 & 28.8 \\ & aniline + H^+ + PhO_2^- \to aniline + Me_0Q_{H} & 134.0 & 132.6 \\ & aniline + H^+ + PhO_2^- \to aniline + PhOH & 128.2 & 124.0 \\ & aniline + H^+ + PhO^- \to aniline + CpH & 124.7 & 118.5 \\ & MeNH_3^+ + pyridine \to MeNH_2 + pyridine_{H^+} & 15.5 & 14.6 \\ & MeNH_3^+ + pyridine \to MeNH_2 + Me_2NH_2^+ & 8.0 & 9.4 \\ & MeNH_3^+ + Me_2NH \to MeNH_2 + Me_2NH^+ & 14.1 & 17.4 \\ & MeNH_3^+ + Me_2N \to MeNH_2 + PhOC_2H & 127.7 & 135.2 \\ & MeNH_3^+ + Me_2N \to MeNH_2 + PhOC_2H & 127.7 & 135.2 \\ & MeNH_3^+ + PhO^- \to MeNH_2 + PhOH & 131.6 & 131.7 \\ & MeNH_3^+ + PhO^- \to MeNH_2 + PhOH & 131.6 & 131.7 \\ & MeNH_3^+ + PhO^- \to MeNH_2 + PhOH & 131.6 & 131.7 \\ & MeNH_3^+ + PhO^- \to pyridine + Me_2NH^+ & -1.4 & 2.9 \\ & pyridine + H^+ MeO_2^- \to pyridine + Me_2NH^+ & -1.4 & 2.9 \\ & pyridine + H^+ PhO_2^- \to Pyridine + PhO_2H & 112.5 & 111.6 \\ & Me_2NH_2^+ + AcO^- \to pyridine + PhOH & 112.5 & 111.6 \\ & Me_2NH_2^+ + PhO_2^- \to Me_2NH + Me_3NH^+ & 6.2 & 8.2 \\ & Pyridine + H^+ PhO_2^- \to Me_2NH + Me_3NH^+ & 6.2 & 8.2 \\ & Pyridine + H^+ PhO_2^- \to Me_2NH + PhO_2H & 119.7 & 125.8 \\ & Me_2NH_2^+ + AcO^- \to Me_3N + PhO_2H & 119.7 & 125.8 \\ & Me_2NH_2^+ + PhO^- \to Me_3N + PhO_2H & 119.7 & 125.8 \\ & Me_2NH_2^+ + PhO^- \to Me_3N + PhO_2H & 119.7 & 125.8 \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $NH_4^+ + PhCO_2^- \rightarrow NH_3 + PhCO_2H$                                               | 137.3                             | 146.4 |
| NH <sub>4</sub> <sup>+</sup> + PhO <sup>-</sup> → NH <sub>3</sub> + PhOH 141.1 143.0<br>NH <sub>4</sub> <sup>+</sup> + Cp <sup>-</sup> → NH <sub>3</sub> + CpH <sup>b</sup> 137.6 137.5<br>aniline·H <sup>+</sup> + MeNH <sub>2</sub> → aniline + MeNH <sub>3</sub> <sup>+</sup> 9.6 117.3<br>aniline·H <sup>+</sup> + MeNH <sub>2</sub> → aniline + MeNH <sub>3</sub> <sup>+</sup> 9.6 125.1 25.9<br>aniline·H <sup>+</sup> + Me <sub>2</sub> NH → aniline + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> 17.6 20.6<br>aniline·H <sup>+</sup> + Me <sub>3</sub> N → aniline + Me <sub>3</sub> NH <sup>+</sup> 23.7 28.8<br>aniline·H <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> → aniline + PhCO <sub>2</sub> H 124.4 127.4<br>aniline·H <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> → aniline + AcOH 134.0 134.0 132.0 23.0 aniline·H <sup>+</sup> + PhO <sup>-</sup> → aniline + PhOH 128.2 124.0 aniline·H <sup>+</sup> + Cp <sup>-</sup> → aniline + CpH 124.7 118.5<br>MeNH <sub>3</sub> <sup>+</sup> + pyridine → MeNH <sub>2</sub> + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> 8.0 9.4<br>MeNH <sub>3</sub> <sup>+</sup> + Me <sub>3</sub> N → MeNH <sub>2</sub> + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> 8.0 9.4<br>MeNH <sub>3</sub> <sup>+</sup> + Me <sub>3</sub> N → MeNH <sub>2</sub> + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> 14.1 17.4<br>MeNH <sub>3</sub> <sup>+</sup> + PhO <sup>-</sup> → MeNH <sub>2</sub> + PhOC <sub>2</sub> H 127.7 135.2 140.4<br>MeNH <sub>3</sub> <sup>+</sup> + PhO <sup>-</sup> → MeNH <sub>2</sub> + CpH 131.6 131.7<br>MeNH <sub>3</sub> <sup>+</sup> + Cp <sup>-</sup> → MeNH <sub>2</sub> + CpH 128.0 126.2<br>pyridine·H <sup>+</sup> + Me <sub>3</sub> N → pyridine + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> -7.6 -5.3<br>pyridine·H <sup>+</sup> + Me <sub>3</sub> N → pyridine + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> -7.6 -5.3<br>pyridine·H <sup>+</sup> + Me <sub>3</sub> N → pyridine + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> -7.6 -5.3<br>pyridine·H <sup>+</sup> + Me <sub>3</sub> N → me <sub>2</sub> NH + PhOC <sub>2</sub> H 112.2 120.6<br>pyridine·H <sup>+</sup> + Me <sub>3</sub> N → me <sub>2</sub> NH + Me <sub>3</sub> NH <sup>+</sup> 14.2 9<br>pyridine·H <sup>+</sup> + Me <sub>3</sub> N → Me <sub>2</sub> NH + Me <sub>3</sub> NH <sup>+</sup> 12.8 125.8<br>pyridine·H <sup>+</sup> + AcO <sup>-</sup> → pyridine + CpH 112.5 111.6<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + AcO <sup>-</sup> → Me <sub>3</sub> NH + AcOH 129.3 131.1<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + AcO <sup>-</sup> → Me <sub>3</sub> NH + AcOH 123.5 122.4<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + AcO <sup>-</sup> → Me <sub>3</sub> NH + PhOO <sub>2</sub> H 119.7 125.8<br>Me <sub>3</sub> NH <sup>+</sup> + PhO <sup>-</sup> → Me <sub>3</sub> N + PhOO <sub>2</sub> H 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + PhO <sup>-</sup> → Me <sub>3</sub> N + AcOH 123.2 122.9<br>Me <sub>3</sub> NH <sup>+</sup> + PhO <sup>-</sup> → Me <sub>3</sub> N + PhOO <sub>2</sub> H 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + PhO <sup>-</sup> → Me <sub>3</sub> N + PhOO <sub>2</sub> H 114.9 108.7<br>PhCO <sub>2</sub> H + AcO <sup>-</sup> → Me <sub>3</sub> N + PhOO <sub>2</sub> H 114.9 108.7<br>PhCO <sub>2</sub> H + AcO <sup>-</sup> → PhCO <sub>2</sub> <sup>-</sup> + CpH 113.9<br>AcOH + Cp <sup>-</sup> → PhOO <sub>2</sub> <sup>-</sup> + CpH - 5.7 - 8.6<br>AcOH + Cp <sup>-</sup> → AcO <sup>-</sup> + PhOH - 5.7 - 8.6<br>AcOH + Cp <sup>-</sup> → PhO <sup>-</sup> + CpH - 7.4 - 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $NH_4^+ + AcO^- \rightarrow NH_3 + AcOH$                                                     | 146.9                             | 151.7 |
| $\begin{split} & NH_4^+ + Cp^- \to NH_3 + CpH^b & 137.6 & 137.5 \\ & aniline·H^+ + MeNH_2 \to aniline + MeNH_3^+ & 9.6 & 11.3 \\ & aniline·H^+ + MeNH_2 \to aniline + MeNH_3^+ & 9.6 & 11.3 \\ & aniline·H^+ + Me_2NH \to aniline + Me_2NH_2^+ & 17.6 & 20.6 \\ & aniline·H^+ + Me_3N \to aniline + Me_2NH_2^+ & 17.6 & 20.6 \\ & aniline·H^+ + PhOO_2^- \to aniline + Me_3NH_2^+ & 23.7 & 28.8 \\ & aniline·H^+ + PhOO_2^- \to aniline + AcOH & 134.0 & 132.6 \\ & aniline·H^+ + PhOO_2^- \to aniline + AcOH & 134.0 & 132.6 \\ & aniline·H^+ + PhO_2^- \to aniline + CpH & 124.7 & 118.5 \\ & MeNH_3^+ + pyridine \to MeNH_2 + pyridine\cdotH^+ & 15.5 & 14.6 \\ & MeNH_3^+ + Me_3N \to MeNH_2 + Me_3NH_2^+ & 8.0 & 9.4 \\ & MeNH_3^+ + Me_3N \to MeNH_2 + Me_3NH_2^+ & 14.1 & 17.4 \\ & MeNH_3^+ + PhOO_2^- \to MeNH_2 + PhOO_2H & 137.3 & 140.4 \\ & MeNH_3^+ + PhOO_2^- \to MeNH_2 + PhOH & 131.6 & 131.7 \\ & MeNH_3^+ + PhO^- \to MeNH_2 + CpH & 128.0 & 126.2 \\ & pyridine\cdotH^+ + Me_3N \to pyridine + Me_3NH^+ & -1.4 & 2.9 \\ & pyridine\cdotH^+ + Me_3N \to pyridine + Me_3NH^+ & -1.4 & 2.9 \\ & pyridine\cdotH^+ + PhOO^- \to pyridine + PhOO_2H & 112.2 & 120.6 \\ & pyridine\cdotH^+ + PhO^- \to pyridine + CpH & 112.5 & 111.6 \\ & Me_2NH_2^+ + PhOO^- \to pyridine + CpH & 112.5 & 111.6 \\ & Me_2NH_2^+ + PhOO^- \to Me_2NH + Me_3NH^+ & 6.2 & 8.2 \\ & Me_2NH_2^+ + PhO^- \to Me_2NH + PhOO_2H & 113.7 & 117.6 \\ & Me_3NH^+ + Cp^- \to Me_3N + PhOH & 123.5 & 122.4 \\ & Me_3NH^+ + AcO^- \to Me_3N + PhOH & 113.7 & 117.6 \\ & Me_3NH^+ + PhO^- \to Me_3N + PhOH & 117.4 & 114.3 \\ & Me_3NH^+ + Cp^- \to Me_3N + CpH & 113.7 & 117.6 \\ & Me_3NH^+ + AcO^- \to Me_3N + PhOH & 117.4 & 114.3 \\ & Me_3NH^+ + Cp^- \to Me_3N + PhOH & 17.4 & 114.9 & 108.7 \\ & PhOO_2H + AcO^- \to Me_3N + PhOH & 17.4 & 114.9 & 108.7 \\ & PhOO_2H + AcO^- \to PhOO_2^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $NH_4^+ + PhO^- \rightarrow NH_3 + PhOH$                                                     | 141.1                             | 143.0 |
| aniline: H <sup>+</sup> + MeNH <sub>2</sub> $\rightarrow$ aniline + MeNH <sub>3</sub> <sup>+</sup> 9.6 11.3<br>aniline: H <sup>+</sup> + pyridine $\rightarrow$ aniline + pyridine: H <sup>+</sup> 25.1 25.9<br>aniline: H <sup>+</sup> + Me <sub>2</sub> NH $\rightarrow$ aniline + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> 17.6 20.6<br>aniline: H <sup>+</sup> + Me <sub>2</sub> NH $\rightarrow$ aniline + Me <sub>3</sub> NH <sup>+</sup> 23.7 28.8<br>aniline: H <sup>+</sup> + PhOO <sub>2</sub> <sup>-</sup> $\rightarrow$ aniline + PhOO <sub>2</sub> H 124.4 127.4<br>aniline: H <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ aniline + AcOH 134.0 132.6<br>aniline: H <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ aniline + CpH 128.2 124.0<br>aniline: H <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ aniline + CpH 128.2 124.0<br>aniline: H <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ aniline + CpH 128.2 124.0<br>aniline: H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ MeNH <sub>2</sub> + pyridine: H <sup>+</sup> 15.5 14.6<br>MeNH <sub>3</sub> <sup>+</sup> + pyridine $\rightarrow$ MeNH <sub>2</sub> + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> 8.0 9.4<br>MeNH <sub>3</sub> <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ MeNH <sub>2</sub> + Me <sub>3</sub> NH <sup>+</sup> 14.1 17.4<br>MeNH <sub>3</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ MeNH <sub>2</sub> + PhOO <sub>2</sub> H 127.7 135.2<br>MeNH <sub>3</sub> <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ MeNH <sub>2</sub> + CpH 128.0 126.2<br>pyridine: H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ pyridine + Me <sub>3</sub> NH <sup>+</sup> -1.4 2.9<br>pyridine: H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ pyridine + Me <sub>3</sub> NH <sup>+</sup> -1.4 2.9<br>pyridine: H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ pyridine + Me <sub>3</sub> NH <sup>+</sup> -1.4 2.9<br>pyridine: H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ Me <sub>2</sub> NH + PhOO <sub>2</sub> H 112.2 120.6<br>pyridine: H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ Me <sub>2</sub> NH + PhOO <sub>2</sub> H 112.5 111.6<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ Me <sub>2</sub> NH + PhOO <sub>4</sub> 112.8 125.8<br>pyridine: H <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ pyridine + CpH 112.5 111.6<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>2</sub> NH + PhOO <sub>4</sub> 129.3 131.1<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> NH + PhOH 123.5 122.4<br>Me <sub>3</sub> NH <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> NH + PhOH 123.5 122.4<br>Me <sub>3</sub> NH <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> NH + PhOH 123.2 122.9<br>Me <sub>3</sub> NH <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.3<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.3<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.3<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + CpH 114.9 108.7<br>PhCO <sub>2</sub> H + AcO <sup>-</sup> $\rightarrow$ PhCO <sub>2</sub> <sup>-</sup> + PhOH 3.7 -3.5<br>PhCO <sub>2</sub> H + AcO <sup>-</sup> $\rightarrow$ PhCO <sub>2</sub> <sup>-</sup> + CpH -3.7 -8.6<br>AcOH + Cp <sup>-</sup> $\rightarrow$ AcO <sup>-</sup> + CpH -3.7 -8.6<br>AcOH + Cp <sup>-</sup> $\rightarrow$ PhO <sup>-</sup> + CpH -3.7 -8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $NH_4^+ + Cp^- \rightarrow NH_3 + CpH^b$                                                     | 137.6                             | 137.5 |
| aniline-H <sup>+</sup> + pyridine $\rightarrow$ aniline + pyridine-H <sup>+</sup> 25.1 25.9<br>aniline-H <sup>+</sup> + Me <sub>2</sub> NH $\rightarrow$ aniline + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> 17.6 20.6<br>aniline-H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ aniline + Me <sub>3</sub> NH <sup>+</sup> 23.7 28.8<br>aniline-H <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow$ aniline + PhCO <sub>2</sub> H 124.4 127.4<br>aniline-H <sup>+</sup> + PhCO <sup>-</sup> $\rightarrow$ aniline + AcOH 134.0 132.6<br>aniline-H <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ aniline + PhOH 128.2 124.0<br>aniline-H <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ aniline + CpH 124.7 118.5<br>MeNH <sub>3</sub> <sup>+</sup> + pyridine $\rightarrow$ MeNH <sub>2</sub> + pyridine-H <sup>+</sup> 15.5 14.6<br>MeNH <sub>3</sub> <sup>+</sup> + Me <sub>2</sub> NH $\rightarrow$ MeNH <sub>2</sub> + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> 8.0 9.4<br>MeNH <sub>3</sub> <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ MeNH <sub>2</sub> + Me <sub>3</sub> NH <sup>+</sup> 14.1 17.4<br>MeNH <sub>3</sub> <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow$ MeNH <sub>2</sub> + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> 8.0 126.2<br>MeNH <sub>3</sub> <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow$ MeNH <sub>2</sub> + PhCO <sub>2</sub> H 127.7 135.2<br>MeNH <sub>3</sub> <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ MeNH <sub>2</sub> + CpH 131.6 131.7<br>MeNH <sub>3</sub> <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ MeNH <sub>2</sub> + CpH 128.0 126.2<br>pyridine-H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ pyridine + Me <sub>3</sub> NH <sup>+</sup> -1.4 2.9<br>pyridine-H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ pyridine + Me <sub>3</sub> NH <sup>+</sup> -1.4 2.9<br>pyridine-H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ pyridine + Me <sub>3</sub> NH <sup>+</sup> -1.4 2.9<br>pyridine-H <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ pyridine + CpH 112.2 120.6<br>pyridine-H <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ pyridine + CpH 112.5 111.6<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ Me <sub>2</sub> NH + Me <sub>3</sub> NH <sup>+</sup> 6.2 8.2<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow$ Me <sub>2</sub> NH + PhCO <sub>2</sub> H 119.7 125.8<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhCO <sub>2</sub> H 123.5 122.4<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhCO <sub>2</sub> H 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhCO <sub>2</sub> H 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhCO <sub>2</sub> H 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhCO <sub>2</sub> H 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.3<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.3<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ PhCO <sub>2</sub> <sup>-</sup> + AcOH 9.4 5.3<br>PhCO <sub>2</sub> H + PhO <sup>-</sup> $\rightarrow$ AcO <sup>-</sup> + PhOH - 5.7 - 8.6<br>AcOH + Cp <sup>-</sup> $\rightarrow$ AcO <sup>-</sup> + CpH - 5.7 - 8.6<br>AcOH + Cp <sup>-</sup> $\rightarrow$ PhCO <sub>2</sub> <sup>-</sup> + CpH - 7.4 - 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | aniline $H^+$ + MeNH <sub>2</sub> $\rightarrow$ aniline + MeNH <sub>3</sub> <sup>+</sup>     | 9.6                               | 11.3  |
| aniline-H <sup>+</sup> + Me <sub>2</sub> NH $\rightarrow$ aniline + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> 17.6 20.6<br>aniline-H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ aniline + Me <sub>5</sub> NH <sup>+</sup> 23.7 28.8<br>aniline-H <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow$ aniline + Me <sub>5</sub> NH <sup>+</sup> 23.7 28.8<br>aniline-H <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow$ aniline + PhCO <sub>2</sub> H 124.4 127.4<br>aniline-H <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ aniline + AcOH 134.0 132.6<br>aniline-H <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ aniline + CpH 128.2 124.0<br>aniline-H <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ aniline + CpH 128.2 124.0<br>aniline-H <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ aniline + CpH 128.2 124.0<br>aniline-H <sup>+</sup> + Me <sub>2</sub> NH $\rightarrow$ MeNH <sub>2</sub> + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> 8.0 9.4<br>MeNH <sub>3</sub> <sup>+</sup> + Me <sub>2</sub> NH $\rightarrow$ MeNH <sub>2</sub> + Me <sub>3</sub> NH <sup>+</sup> 14.1 17.4<br>MeNH <sub>3</sub> <sup>+</sup> + Me <sub>2</sub> NH $\rightarrow$ MeNH <sub>2</sub> + Me <sub>3</sub> NH <sup>+</sup> 14.1 17.4<br>MeNH <sub>3</sub> <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow$ MeNH <sub>2</sub> + Me <sub>3</sub> NH <sup>+</sup> 14.1 17.4<br>MeNH <sub>3</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ MeNH <sub>2</sub> + PhCO <sub>2</sub> H 127.7 135.2<br>MeNH <sub>3</sub> <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ MeNH <sub>2</sub> + CpH 131.6 131.7<br>MeNH <sub>3</sub> <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ MeNH <sub>2</sub> + CpH 128.0 126.2<br>pyridine-H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ pyridine + Me <sub>3</sub> NH <sup>+</sup> -1.4 2.9<br>pyridine-H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ pyridine + Me <sub>3</sub> NH <sup>+</sup> -1.4 2.9<br>pyridine-H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ pyridine + AcOH 121.8 125.8<br>pyridine-H <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ pyridine + CpH 112.5 111.6<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>2</sub> NH + Me <sub>3</sub> NH <sup>+</sup> 6.2 8.2<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>2</sub> NH + Me <sub>3</sub> NH <sup>+</sup> 6.2 8.2<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>2</sub> NH + PhOO <sub>2</sub> H 112.5 111.6<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhCO <sub>2</sub> H 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhCO <sub>2</sub> H 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOO <sub>4</sub> 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOO <sub>4</sub> 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.3<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.3<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.3<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.3<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ PhCO <sub>2</sub> <sup>-</sup> + CpH 1.3 - 8.9<br>AcOH + PhO <sup>-</sup> $\rightarrow$ AcO <sup>-</sup> + PhOH - 5.7 - 8.6<br>AcOH + Cp <sup>-</sup> $\rightarrow$ PhCO <sub>2</sub> <sup>-</sup> + CpH - 8.1 -14.2<br>PhOH + Cp <sup>-</sup> $\rightarrow$ PhO <sup>-</sup> + CpH2.4 -5.5                                                                                                                                                                                                                                                                                                                                                               | aniline $H^+$ + pyridine $\rightarrow$ aniline + pyridine $H^+$                              | 25.1                              | 25.9  |
| aniline-H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ aniline + Me <sub>3</sub> NH <sup>+</sup> 23.7 28.8<br>aniline-H <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow$ aniline + PhCO <sub>2</sub> H 124.4 127.4<br>aniline-H <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ aniline + PhCO <sub>2</sub> H 134.0 132.6<br>aniline-H <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ aniline + CpH 124.7 118.5<br>MeNH <sub>3</sub> <sup>+</sup> + pyridine $\rightarrow$ MeNH <sub>2</sub> + Pyridine-H <sup>+</sup> 15.5 14.6<br>MeNH <sub>3</sub> <sup>+</sup> + Me <sub>2</sub> NH $\rightarrow$ MeNH <sub>2</sub> + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> 8.0 9.4<br>MeNH <sub>3</sub> <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ MeNH <sub>2</sub> + Me <sub>3</sub> NH <sup>+</sup> 14.1 17.4<br>MeNH <sub>3</sub> <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow$ MeNH <sub>2</sub> + Me <sub>3</sub> NH <sup>+</sup> 14.1 17.4<br>MeNH <sub>3</sub> <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow$ MeNH <sub>2</sub> + PhCO <sub>2</sub> H 127.7 135.2<br>MeNH <sub>3</sub> <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ MeNH <sub>2</sub> + CPH 137.3 140.4<br>MeNH <sub>3</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ MeNH <sub>2</sub> + CPH 131.6 131.7<br>MeNH <sub>3</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ MeNH <sub>2</sub> + CPH 128.0 126.2<br>pyridine-H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ pyridine + Me <sub>3</sub> NH <sup>+</sup> -1.4 2.9<br>pyridine-H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ pyridine + Me <sub>3</sub> NH <sup>+</sup> -1.4 2.9<br>pyridine-H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ pyridine + AcOH 121.8 125.8<br>pyridine-H <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ pyridine + CPH 112.5 111.6<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>2</sub> NH + Me <sub>3</sub> NH <sup>+</sup> 6.2 8.2<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>2</sub> NH + Me <sub>3</sub> NH <sup>+</sup> 6.2 8.2<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>2</sub> NH + AcOH 129.3 131.1<br>Me <sub>5</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhCO <sub>2</sub> H 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhCO <sub>2</sub> H 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhCO <sub>2</sub> H 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 114.9 108.7<br>PhCO <sub>2</sub> H + AcO <sup>-</sup> $\rightarrow$ PhCO <sub>2</sub> <sup>-</sup> + AcOH 23.2 122.9<br>Me <sub>3</sub> NH <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ PhCO <sub>2</sub> <sup>-</sup> + CPH 3.7 -3.5<br>PhCO <sub>2</sub> H + PhO <sup>-</sup> $\rightarrow$ AcO <sup>-</sup> + PhOH5.7 -8.6<br>AcOH + Cp <sup>-</sup> $\rightarrow$ AcO <sup>-</sup> + CpH2.4 -5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | aniline $H^+ + Me_2NH \rightarrow aniline + Me_2NH_2^+$                                      | 17.6                              | 20.6  |
| aniline-H <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow$ aniline + PhCO <sub>2</sub> H 124.4 127.4<br>aniline-H <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ aniline + AcOH 134.0 132.6<br>aniline-H <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ aniline + PhOH 128.2 124.0<br>aniline-H <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ aniline + CpH 124.7 118.5<br>MeNH <sub>3</sub> <sup>+</sup> + pyridine $\rightarrow$ MeNH <sub>2</sub> + pyridine-H <sup>+</sup> 15.5 14.6<br>MeNH <sub>3</sub> <sup>+</sup> + Me <sub>2</sub> NH $\rightarrow$ MeNH <sub>2</sub> + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> 8.0 9.4<br>MeNH <sub>3</sub> <sup>+</sup> + Me <sub>2</sub> NH $\rightarrow$ MeNH <sub>2</sub> + Me <sub>3</sub> NH <sup>+</sup> 14.1 17.4<br>MeNH <sub>3</sub> <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow$ MeNH <sub>2</sub> + PhCO <sub>2</sub> H 127.7 135.2<br>MeNH <sub>3</sub> <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ MeNH <sub>2</sub> + PhOH 131.6 131.7<br>MeNH <sub>3</sub> <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ MeNH <sub>2</sub> + CpH 128.0 126.2<br>pyridine-H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ pyridine + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> -7.6 -5.3<br>pyridine-H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ pyridine + Me <sub>3</sub> NH <sup>+</sup> -1.4 2.9<br>pyridine-H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow$ pyridine + AcOH 121.8 125.8<br>pyridine-H <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ pyridine + CpH 112.2 120.6<br>pyridine-H <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ pyridine + CpH 112.5 111.6<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>2</sub> NH + Me <sub>3</sub> NH <sup>+</sup> 6.2 8.2<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>2</sub> NH + Me <sub>3</sub> NH <sup>+</sup> 12.5 111.6<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>2</sub> NH + Me <sub>3</sub> NH <sup>+</sup> 12.5 122.4<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOO <sub>4</sub> 123.5 122.4<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOO <sub>4</sub> 123.5 122.4<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOO <sub>4</sub> 123.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOO <sub>4</sub> 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOO <sub>4</sub> 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.3<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.3<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.3<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.3<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.3<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.3<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.3<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.3<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.3<br>Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> $\rightarrow$ Me <sub>3</sub> N + PhOH 117.4 114.9 108.7<br>PhCO <sub>2</sub> H + AcO <sup>-</sup> $\rightarrow$ PhCO <sub>2</sub> <sup>-</sup> + AcOH 9.4 5.3<br>PhCO <sub>2</sub> H + PhO <sup>-</sup> $\rightarrow$ AcO <sup>-</sup> + PhOH -5.7 -8.6<br>AcOH + Cp <sup>-</sup> $\rightarrow$ AcO <sup>-</sup> + PhOH -5.7 -8.6<br>AcOH + Cp <sup>-</sup> $\rightarrow$ PhO <sup>-</sup> + CPH -5.7 -8.6<br>AcOH + Cp <sup>-</sup> $\rightarrow$ PhO <sup>-</sup> + CPH -5.7 -8.6 | aniline $H^+ + Me_3N \rightarrow aniline + Me_3NH^+$                                         | 23.7                              | 28.8  |
| aniline·H <sup>+</sup> + AcO <sup>-</sup> → aniline + AcOH134.0132.6aniline·H <sup>+</sup> + PhO <sup>-</sup> → aniline + PhOH128.2124.0aniline·H <sup>+</sup> + Cp <sup>-</sup> → aniline + CpH124.7118.5MeNH <sub>3</sub> <sup>+</sup> + pyridine → MeNH <sub>2</sub> + pyridine·H <sup>+</sup> 15.514.6MeNH <sub>3</sub> <sup>+</sup> + Me <sub>2</sub> NH → MeNH <sub>2</sub> + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> 8.09.4MeNH <sub>3</sub> <sup>+</sup> + Me <sub>3</sub> N → MeNH <sub>2</sub> + Me <sub>3</sub> NH <sup>+</sup> 14.117.4MeNH <sub>3</sub> <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> → MeNH <sub>2</sub> + PhCO <sub>2</sub> H127.7135.2MeNH <sub>3</sub> <sup>+</sup> + AcO <sup>-</sup> → MeNH <sub>2</sub> + PhOH131.6131.7MeNH <sub>3</sub> <sup>+</sup> + PhO <sup>-</sup> → MeNH <sub>2</sub> + CpH128.0126.2pyridine·H <sup>+</sup> + Me <sub>3</sub> NH → pyridine + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> -7.6-5.3pyridine·H <sup>+</sup> + Me <sub>3</sub> N → pyridine + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> -7.6-5.3pyridine·H <sup>+</sup> + PhO <sup>-</sup> → pyridine + AcOH121.8125.8pyridine·H <sup>+</sup> + PhO <sup>-</sup> → pyridine + PhOC <sub>2</sub> H112.2120.6pyridine·H <sup>+</sup> + PhO <sup>-</sup> → pyridine + CpH116.0117.1pyridine·H <sup>+</sup> + PhO <sup>-</sup> → pyridine + CpH112.5111.6Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> → Me <sub>2</sub> NH + Me <sub>3</sub> NH <sup>+</sup> 6.28.2Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> → Me <sub>2</sub> NH + AcOH129.3131.1Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> → Me <sub>2</sub> NH + CpH110.0116.9Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> → Me <sub>3</sub> N + PhOO <sub>4</sub> 123.2122.4Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> → Me <sub>3</sub> N + PhOO <sub>4</sub> 133.7117.6Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> → Me <sub>3</sub> N + PhOO <sub>4</sub> 133.7117.6Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> → Me <sub>3</sub> N + PhOO <sub>4</sub> 133.7117.6Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> → Me <sub>3</sub> N + PhOO <sub>4</sub> 133.7117.6Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> → Me <sub>3</sub> N + PhOH117.4 </td <td>aniline <math>H^+</math> + PhCO<sub>2</sub><sup>-</sup> <math>\rightarrow</math> aniline + PhCO<sub>2</sub>H</td> <td>124.4</td> <td>127.4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | aniline $H^+$ + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow$ aniline + PhCO <sub>2</sub> H   | 124.4                             | 127.4 |
| aniline·H <sup>+</sup> + PhO <sup>-</sup> → aniline + PhOH128.2124.0aniline·H <sup>+</sup> + Cp <sup>-</sup> → aniline + CpH124.7118.5MeNH <sub>3</sub> <sup>+</sup> + pyridine → MeNH <sub>2</sub> + pyridine·H <sup>+</sup> 15.514.6MeNH <sub>3</sub> <sup>+</sup> + Me <sub>2</sub> NH → MeNH <sub>2</sub> + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> 8.09.4MeNH <sub>3</sub> <sup>+</sup> + Me <sub>3</sub> N → MeNH <sub>2</sub> + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> 8.09.4MeNH <sub>3</sub> <sup>+</sup> + Me <sub>2</sub> NH → MeNH <sub>2</sub> + Me <sub>3</sub> NH <sup>+</sup> 14.117.4MeNH <sub>3</sub> <sup>+</sup> + PhO <sub>2</sub> → MeNH <sub>2</sub> + PhCO <sub>2</sub> H127.7135.2MeNH <sub>3</sub> <sup>+</sup> + AcO <sup>-</sup> → MeNH <sub>2</sub> + AcOH137.3140.4MeNH <sub>3</sub> <sup>+</sup> + Cp <sup>-</sup> → MeNH <sub>2</sub> + CpH128.0126.2pyridine·H <sup>+</sup> + Me <sub>2</sub> NH → pyridine + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> -7.6-5.3pyridine·H <sup>+</sup> + Me <sub>2</sub> N → pyridine + Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> -7.6-5.3pyridine·H <sup>+</sup> + PhO <sub>2</sub> → pyridine + PhOO <sub>2</sub> H112.2120.6pyridine·H <sup>+</sup> + PhO <sub>2</sub> → pyridine + AcOH121.8125.8pyridine·H <sup>+</sup> + PhO <sub>2</sub> → pyridine + CpH116.0117.1pyridine·H <sup>+</sup> + PhO <sub>2</sub> → pyridine + CpH112.5111.6Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + Me <sub>3</sub> N → Me <sub>2</sub> NH + Me <sub>3</sub> NH <sup>+</sup> 6.28.2Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sub>2</sub> → Me <sub>2</sub> NH + PhOH123.5122.4Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> → Me <sub>2</sub> NH + CpH121.0116.9Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> → Me <sub>3</sub> N + PhOH123.2122.9Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> → Me <sub>3</sub> N + PhOH117.4114.3Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> → Me <sub>3</sub> N + PhOH117.4114.3Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> → Me <sub>3</sub> N + PhOH117.4114.3Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> → Me <sub>3</sub> N + PhOH117.4114.3Me <sub>3</sub> NH <sup>+</sup> + Cp <sup>-</sup> → Me <sub>3</sub> N + PhOH117.4114.3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | aniline $H^+ + AcO^- \rightarrow aniline + AcOH$                                             | 134.0                             | 132.6 |
| aniline: $H^+ + Cp^- \rightarrow aniline + CpH$ 124.7 118.5<br>MeNH <sub>3</sub> <sup>+</sup> + pyridine $\rightarrow MeNH_2 + pyridine: H^+$ 15.5 14.6<br>MeNH <sub>3</sub> <sup>+</sup> + Me <sub>2</sub> NH $\rightarrow MeNH_2 + Me_2NH_2^+$ 8.0 9.4<br>MeNH <sub>3</sub> <sup>+</sup> + Me <sub>3</sub> N $\rightarrow MeNH_2 + Me_3NH^+$ 14.1 17.4<br>MeNH <sub>3</sub> <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow MeNH_2 + Me_3NH^+$ 14.1 17.4<br>MeNH <sub>3</sub> <sup>+</sup> + PhOC <sub>2</sub> <sup>-</sup> $\rightarrow MeNH_2 + PhCO_2H$ 127.7 135.2<br>MeNH <sub>3</sub> <sup>+</sup> + Cp <sup>-</sup> $\rightarrow MeNH_2 + CpH$ 131.6 131.7<br>MeNH <sub>3</sub> <sup>+</sup> + Cp <sup>-</sup> $\rightarrow MeNH_2 + CpH$ 128.0 126.2<br>pyridine: H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow pyridine + Me_3NH^+$ -1.4 2.9<br>pyridine: H <sup>+</sup> + Me <sub>3</sub> N $\rightarrow pyridine + Me_3NH^+$ -1.4 2.9<br>pyridine: H <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow pyridine + PhCO_2H$ 112.2 120.6<br>pyridine: H <sup>+</sup> + PhO <sup>-</sup> $\rightarrow pyridine + AcOH$ 121.8 125.8<br>pyridine: H <sup>+</sup> + PhO <sup>-</sup> $\rightarrow pyridine + CpH$ 116.0 117.1<br>pyridine: H <sup>+</sup> + Cp <sup>-</sup> $\rightarrow pyridine + CpH$ 112.5 111.6<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + Me <sub>3</sub> N $\rightarrow Me_2NH + Me_3NH^+$ 6.2 8.2<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow Me_2NH + PhCO_2H$ 119.7 125.8<br>Me <sub>2</sub> NH <sub>2</sub> <sup>+</sup> + PhO <sup>-</sup> $\rightarrow Me_2NH + PhCO_2H$ 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow Me_3N + PhCO_2H$ 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> $\rightarrow Me_3N + PhCO_2H$ 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> $\rightarrow Me_3N + PhCO_2H$ 113.7 117.6<br>Me <sub>3</sub> NH <sup>+</sup> + AcO <sup>-</sup> $\rightarrow Me_3N + PhOH$ 114.9 108.7<br>PhCO <sub>2</sub> H + AcO <sup>-</sup> $\rightarrow PhCO_2^- + AcOH$ 9.4 5.3<br>PhCO <sub>2</sub> H + PhO <sup>-</sup> $\rightarrow PhCO_2^- + CpH$ 1.3 -8.9<br>AcOH + PhO <sup>-</sup> $\rightarrow AcO^- + PhOH$ -5.7 -8.6<br>AcOH + Cp <sup>-</sup> $\rightarrow AcO^- + CpH$ -3.1 -14.2<br>PhOH + Cp <sup>-</sup> $\rightarrow PhO^- + CpH$ -3.1 -14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | aniline•H <sup>+</sup> + PhO <sup>-</sup> → aniline + PhOH                                   | 128.2                             | 124.0 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aniline•H <sup>+</sup> + Cp <sup>-</sup> → aniline + CpH                                     | 124.7                             | 118.5 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $MeNH_3^+ + pyridine \rightarrow MeNH_2 + pyridine H^+$                                      | 15.5                              | 14.6  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $MeNH_3^+ + Me_2NH \rightarrow MeNH_2 + Me_2NH_2^+$                                          | 8.0                               | 9.4   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $MeNH_3^+ + Me_3N \rightarrow MeNH_2 + Me_3NH^+$                                             | 14.1                              | 17.4  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $MeNH_3^+ + PhCO_2^- \rightarrow MeNH_2 + PhCO_2H$                                           | 127.7                             | 135.2 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $MeNH_3^+ + AcO^- \rightarrow MeNH_2 + AcOH$                                                 | 137.3                             | 140.4 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $MeNH_3^+ + PhO^- \rightarrow MeNH_2 + PhOH$                                                 | 131.6                             | 131.7 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $MeNH_3^+ + Cp^- \rightarrow MeNH_2 + CpH$                                                   | 128.0                             | 126.2 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pyridine $H^+ + Me_2NH \rightarrow pyridine + Me_2NH_2^+$                                    | -7.6                              | -5.3  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pyridine $H^+ + Me_3N \rightarrow pyridine + Me_3NH^+$                                       | -1.4                              | 2.9   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pyridine $H^+$ + PhCO <sub>2</sub> <sup>-</sup> $\rightarrow$ pyridine + PhCO <sub>2</sub> H | 112.2                             | 120.6 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pyridine•H <sup>+</sup> + AcO <sup>-</sup> → pyridine + AcOH                                 | 121.8                             | 125.8 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pyridine $H^+ + PhO^- \rightarrow pyridine + PhOH$                                           | 116.0                             | 117.1 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pyridine $H^+ + Cp^- \rightarrow pyridine + CpH$                                             | 112.5                             | 111.6 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Me_2NH_2^+ + Me_3N \rightarrow Me_2NH + Me_3NH^+$                                           | 6.2                               | 8.2   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Me_2NH_2^+ + PhCO_2^- \rightarrow Me_2NH + PhCO_2H$                                         | 119.7                             | 125.8 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Me_2NH_2^+ + AcO^- \rightarrow Me_2NH + AcOH$                                               | 129.3                             | 131.1 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Me_2NH_2^+ + PhO^- \rightarrow Me_2NH + PhOH$                                               | 123.5                             | 122.4 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $Me_2NH_2^+ + Cp^- \rightarrow Me_2NH + CpH$                                                 | 121.0                             | 116.9 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $Me_3NH^+ + PhCO_2^- \rightarrow Me_3N + PhCO_2H$                                            | 113.7                             | 117.6 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $Me_3NH^+ + AcO^- \rightarrow Me_3N + AcOH$                                                  | 123.2                             | 122.9 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Me_3NH^+ + PhO^- \rightarrow Me_3N + PhOH$                                                  | 117.4                             | 114.3 |
| PhCO2H + AcO <sup>-</sup> $\rightarrow$ PhCO2 <sup>-</sup> + AcOH9.45.3PhCO2H + PhO <sup>-</sup> $\rightarrow$ PhCO2 <sup>-</sup> + PhOH3.7-3.5PhCO2H + Cp <sup>-</sup> $\rightarrow$ PhCO2 <sup>-</sup> + CpH1.3-8.9AcOH + PhO <sup>-</sup> $\rightarrow$ AcO <sup>-</sup> + PhOH-5.7-8.6AcOH + Cp <sup>-</sup> $\rightarrow$ AcO <sup>-</sup> + CpH-8.1-14.2PhOH + Cp <sup>-</sup> $\rightarrow$ PhO <sup>-</sup> + CpH-2.4-5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $Me_3NH^+ + Cp^- \rightarrow Me_3N + CpH$                                                    | 114.9                             | 108.7 |
| PhCO2H + PhO <sup>-</sup> $\rightarrow$ PhCO2 <sup>-</sup> + PhOH3.7-3.5PhCO2H + Cp <sup>-</sup> $\rightarrow$ PhCO2 <sup>-</sup> + CpH1.3-8.9AcOH + PhO <sup>-</sup> $\rightarrow$ AcO <sup>-</sup> + PhOH-5.7-8.6AcOH + Cp <sup>-</sup> $\rightarrow$ AcO <sup>-</sup> + CpH-8.1-14.2PhOH + Cp <sup>-</sup> $\rightarrow$ PhO <sup>-</sup> + CpH-2.4-5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $PhCO_2H + AcO^- \rightarrow PhCO_2^- + AcOH$                                                | 9.4                               | 5.3   |
| $PhCO_2H + Cp^- \rightarrow PhCO_2^- + CpH$ 1.3-8.9 $AcOH + PhO^- \rightarrow AcO^- + PhOH$ -5.7-8.6 $AcOH + Cp^- \rightarrow AcO^- + CpH$ -8.1-14.2 $PhOH + Cp^- \rightarrow PhO^- + CpH$ -2.4-5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $PhCO_2H + PhO^- \rightarrow PhCO_2^- + PhOH$                                                | 3.7                               | -3.5  |
| $AcOH + PhO^- \rightarrow AcO^- + PhOH$ $-5.7$ $-8.6$ $AcOH + Cp^- \rightarrow AcO^- + CpH$ $-8.1$ $-14.2$ $PhOH + Cp^- \rightarrow PhO^- + CpH$ $-2.4$ $-5.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $PhCO_2H + Cp^- \rightarrow PhCO_2^- + CpH$                                                  | 1.3                               | -8.9  |
| $AcOH + Cp^- \rightarrow AcO^- + CpH$ $-8.1$ $-14.2$ $PhOH + Cp^- \rightarrow PhO^- + CpH$ $-2.4$ $-5.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $AcOH + PhO^- \rightarrow AcO^- + PhOH$                                                      | -5.7                              | -8.6  |
| $PhOH + Cp^- \rightarrow PhO^- + CpH \qquad -2.4 \qquad -5.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $AcOH + Cp^- \rightarrow AcO^- + CpH$                                                        | -8.1                              | -14.2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $PhOH + Cp^- \rightarrow PhO^- + CpH$                                                        | -2.4                              | -5.5  |

<sup>a</sup> From refs 15 and 17. <sup>b</sup>Cp = cyclopentadienyl (C<sub>5</sub>H<sub>5</sub>).

the equilibrium in question. In all cases  $\Delta G^{o}_{aq}$  was calculated by optimizing the structures of reactants and products in aqueous solution with AM1-SM1, and  $\Delta G^{\circ}_{g}$  was computed from gas-phase optimized structures by AM1.<sup>14</sup> Vibrational contributions were assumed to cancel, i.e., to change negligibly upon solvation. A positive  $\Delta\Delta G^{\circ}_{g \to aq}$  value implies that the illustrated equilibrium shifts to the left on solvation, and a negative value implies the opposite.

The results for acid-base equilibria are in Table I, where they are compared to experiment. The latter were obtained by correcting the experimental<sup>15</sup>  $\Delta H^{298}_{g}$  proton affinities or deprotonation enthalpies using AM1 calculated absolute entropies<sup>16</sup> to obtain  $\Delta G^{\circ}_{g}$  values and using standard pK<sub>a</sub> differences<sup>17</sup> to obtain  $\Delta G^{\circ}_{ao}$ .

Table II. Isomerization Free Energy Changes on Solvation



"See text for references.

The entropic contributions to the gas-phase free energies are, as expected, quite small. From the cyclopentadienyl anion (Cp<sup>-</sup>) to ammonia, the substrates span a basicity range of 145.4 kcal/mol in the gas phase, and from Cp<sup>-</sup> to benzoate, of 16.3 kcal/mol in solution. The first few examples in Table I illustrate the significantly enhanced basicity of ammonia upon solvation when compared to other amine bases.<sup>18</sup> Similarly, the last three examples illustrate the greater solvation free energies of acetate relative to phenoxide, and phenoxide relative to Cp<sup>-</sup>. These effects are well reproduced by AM1-SM1. The root mean square error found for all 45 proton transfers is 4.2 kcal, which is less than 3% of the range of values involved.

Table II summarizes the results for six different isomeric equilibria. In the first case, in the absence of a polar medium, roughly equal populations of the hydroxy ketone and lactol tautomers are observed; in water, however, no lactol is observed.<sup>19</sup> Hydroxypyridine/pyridone equilibria have been extensively studied.<sup>20</sup> Again, detection limits allow only a bound to be set for the 4-substituted isomer. However, AM1-SM1 does quite well with the 2-substituted isomer, for which both gas-phase and solution equilibrium constants are available. Other well-known equilibria where solvation plays a critical role are the enol/ketone equilibria observed for  $\beta$ -keto esters and  $\beta$ -diketones. For both ethyl acetoacetate and acetylacetone, experimental equilibrium constants are available in both the gas and aqueous phases.<sup>21</sup>

<sup>(14)</sup> All calculations were carried out using AMSOL version 1.0, Cramer, C. J., Truhlar, D. G., Quantum Chemistry Program Exchange program no. 606, which is based on AMPAC version 2.1: Liotard, D. L.; Healy, E. F.; K. J. K. J. K. J. S. S. CPE Bull. 1989, 9, 123. See: Cramer, C. J.;
 Truhlar, D. G. QCPE Bull. 1991, 11, 57.
 (15) (a) Meot-Ner, M.; Sieck, L. W. J. Am. Chem. Soc. 1991, 113, 4448.

<sup>(</sup>b) Lias, S. G.; Liebman, J. F.; Levin, R. D. J. Phys. Chem. Ref. Data 1984, 13, 695.

 <sup>(16)</sup> Dewar, M. J. S.; Ford, G. P. J. Am. Chem. Soc. 1977, 99, 7822.
 (17) (a) Handbook of Chemistry and Physics, 64th ed.; Weast, R. C., Ed.;
 CRC Press: Boca Raton, 1988. (b) Streitwieser, A., Jr.; Nebenzahl, L. L. J. Am. Chem. Soc. 1976, 98, 2188.

<sup>(18) (</sup>a) Munson, M. S. B. J. Am. Chem. Soc. 1965, 87, 2332. (b) Brauman, J. I.; Rivers, J. M.; Blair, L. K. J. Am. Chem. Soc. 1971, 93, 3914. (c) Aue, D. H.; Webb, H. M.; Bowers, M. T. J. Am. Chem. Soc. 1972, 94, 4726. (d) Arnett, E. M.; Jones, F. M., III; Taagepera, M.; Henderson, W G.; Beauchamp, J. L.; Holtz, D.; Taft, R. W. J. Am. Chem. Soc. 1972, 94, 4724

<sup>4724.
(19)</sup> Whiting, J.; Edward, J. T. Can. J. Chem. 1971, 49, 3799.
(20) (a) Beak, P. Acc. Chem. Res. 1977, 10, 186. (b) Katritzky, A. R.
Handbook of Heterocyclic Chemistry; Pergamon: New York, 1985. (c)
Kwiatkowski, J. S.; Zielinski, T. J.; Rein, R. Adv. Quantum Chem. 1986, 18, 85. (d) Karelson, M. M.; Katrizky, A. R.; Szafran, M.; Zerner, M. C. J. Org. Chem. 1989, 54, 6030. (e) Fabian, W. M. F. J. Comput. Chem. 1991, 12, 17

<sup>(21) (</sup>a) Briegleb, G.; Strohmeier, W. Angew. Chem. 1952, 64, 409. (b)

<sup>Mills, S. G.; Beak, P. J. Org. Chem. 1985, 50, 1216.
(22) (a) Ataka, S.; Takeuchi, H.; Tasumi, M. J. Mol. Struct. 1984, 113, 147.
(b) Radzicka, A.; Pedersen, L.; Wolfenden, R. Biochemistry 1988, 27, 110.</sup> 4538.

Again AM1-SM1 predicts the  $\Delta\Delta G_{g \rightarrow aq}$  values accurately. Interestingly, the rotameric equilibrium between the *E* and *Z* forms of N-methylacetamide is unaffected by aqueous solvation, i.e.,  $\Delta\Delta G_{g \rightarrow aq} = 0.0$ , although  $\Delta G_S^{\circ}$ , the free energy of solvation for either isomer, is sizable at -10.0 kcal/mol.<sup>22,23</sup> AM1-SM1 predicts  $\Delta G_{\rm S}^{\circ}$  for the E isomer exactly, but yields only -8.5 kcal for the Z isomer, giving a  $\Delta\Delta G_{g \rightarrow aq}$  of 1.5 kcal. We conclude that AMI-SM1 has useful chemical accuracy for

the effect of hydration on chemical equilibria. We expect that in most cases the dominant error in AM1-SM1 molecular orbital calculations of relative free energies for medium-size organic molecules in aqueous solution will be the error in treating the electronic structure of the solute, not the error in the hydration effect.

Acknowledgment. This work was supported by the NSF and the USA-CRDEC ILIR program.

(23) (a) Yu, H.-A.; Pettitt, B. M.; Karplus, M. J. Am. Chem. Soc. 1991, 113, 2425. (b) Jorgensen, W. L.; Gao, J. J. Am. Chem. Soc. 1988, 110, 4212.

## Enantioselective and Diastereoselective Molecular **Recognition of Alicyclic Substrates in Aqueous Media** by a Chiral, Resolved Synthetic Receptor<sup>1</sup>

Thomas H. Webb, Hongsuk Suh, and Craig S. Wilcox\*.2

Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania 15260 Received June 10, 1991

Alkanes have small dipole moments, are of relatively low polarizability, and bear no hydrogen-bonding groups. For this reason, simple alicyclic molecules, when compared to the multiple hydrogen bond forming targets most often studied in contemporary molecular recognition projects, can be characterized as rather reluctant partners in host-guest events. Nevertheless, molecules of this class are often used in natural intraspecies and intracellular communication processes, because alicyclic molecules are especially stable, stereochemically complex, and information-rich.<sup>3</sup> Shape selective receptors for alicyclic molecules could be used in analytical applications, in chromatography, or as agents for the control or catalysis of alicyclic substrate reactivity. Here we describe the synthesis and initial characterization of an optically pure, water-soluble receptor (1) that binds stereoselectively to neutral alicyclic targets. The receptor shows immediate promise as a chiral shift reagent for alkanes.



Since the pioneering work of Whitlock, Koga, Tabushi, and Murakami, cyclophanes have become a well-established class of synthetic receptors for neutral organic targets and have very often



<sup>a</sup>(a) DCC/CH<sub>2</sub>Cl<sub>2</sub>, (-)-menthol, then separate diastereomers; (b) concentrated  $H_2SO_4$ , then CH<sub>3</sub>OH, H<sup>+</sup>; (c) ClSO<sub>3</sub>H; (d) 7, C<sub>5</sub>H<sub>5</sub>N; (e) Ni (Raney), then H<sub>2</sub>/PtO<sub>2</sub>; (f) TFA, hexamethylenetetramine; (g) LiOH,  $MeOH/H_2O$ ; (h)  $NH_4OH/H_2O$ .

been used in studies of binding to aromatic substrates.<sup>4,5</sup> Much less often, cyclophane hosts have been used for neutral aliphatic and alicyclic guests or prepared in optically pure form.<sup>6g-i,7</sup> A simple rectangular shape is adequate for binding to benzenoid substrates.<sup>4,8</sup> Receptors for even the simplest aliphatic substrates require a larger pocket. For two benzene rings to bracket a cyclohexane ring, the benzene rings should be separated by about 8.5 Å. Chiral molecular tweezers (2) prepared in this lab appear to be well suited for alkane binding but have a disadvantage: water-soluble derivatives of these simple chiral clefts dimerize when in solution.<sup>9</sup>

With these thoughts in mind, we undertook the synthesis of a new chiral and conformationally restricted cyclophane (Scheme I). The racemic nitro acid 3 was resolved through formation of the (-)-menthyl diesters. Crystallization (hexane-ethyl acetate) provided pure diastereomer 4 (mp 186-187 °C).<sup>10</sup> The optically pure dimethyl ester  $5([\alpha]_D = 48.2^\circ)$  was obtained in 21% overall yield from diacid  $3.^{10}$  Chlorosulfonylation of 5 afforded two regioisomeric sulfonyl chlorides (6) in approximately equal amounts. Isomer 6a was treated with diamine 7 to afford the bis(sulfonamide) 8. Treatment of diamine 9 in trifluoroacetic acid with hexamethylenetetramine created the dibenzodiazocine unit and provided the macrocyclic tetraester 10 in 28% yield.11-13

Chemistry of Synthetic Receptors and Functional Group Arrays. 16.
 Part 14: Smith, P. J.; Wilcox, C. S. *Tetrahedron* 1991, 47, 2617-2628.
 (2) Fellow of the Alfred P. Sloan Foundation, 1988-1991.

 <sup>(3) (</sup>a) Meinwald, J.; Prestwich, G. D.; Nakanishi, K.; Kubo, I. Science
 1978, 199, 1167-73. (b) Sharon, N. Trends Biochem. Sci. 1984, 9, 198. (c) Roth, J.; Le Roith, D.; Shiloach, J.; Rubinovitz, C. Clin. Res. 1983, 31, 354-363.

<sup>(4)</sup> The area of cyclophane host-guest chemistry was recently reviewed:
Diederich, F. Angew. Chem., Int. Ed. Engl. 1988, 27, 362-386.
(5) Molecular recognition reviews: (a) Cram, D. J. Angew. Chem., Int.

Ed. Engl. 1988, 27, 1009. (b) Lehn, J. M. Angew. Chem., Int. Ed. Engl. 1988, 27, 89. (c) Rebek, J., Jr. Acc. Chem. Res. 1990, 23, 399-404.

<sup>(6)</sup> Optically pure cyclophane hosts: (a) Takahashi, I.; Odashima, K.; Koga, K. Tetrahedron Lett. 1984, 25, 973–976. (b) Canceill, J.; Lacombe, L.; Collet, A. J. Am. Chem. Soc. 1986, 108, 4230–4232. (c) Rubin, Y.; Dick, K.; Diederich, F. J. Org. Chem. 1986, 51, 3270. (d) Wilcox, C. S.; Cowart,
 M. D. Carbohydr. Res. 1987, 171, 141-160. (e) Bukownik, R. R.; Wilcox, C. S. J. Org. Chem. 1988, 53, 463-471. (f) Dharanipragada, R.; Diederich, C. S. Org. Chem. 1987, 28, 243. (g) Petti, M. A.; Sheppodd, T. J.;
 Barrans, R. E.; Dougherty, D. A. J. Am. Chem. Soc. 1988, 110, 6825–6840.
 (h) Bonar-Law, R. P.; Davis, A. P.; Murray, B. A. Angew. Chem., Int. Ed.
 Engl. 1990, 29, 1407–1408. (i) Georgiadis, T. M.; Georgiadis, M. M.; Diederich, F. J. Org. Chem. 1991, 56, 3362–3369.

<sup>(7)</sup> Binding of neutral nonaromatic targets by cyclophane hosts: Vögtle, F.; Müller, W. M. Angew. Chem., Int. Ed. Engl. 1984, 23, 712-714. (b) Vögtle, F.; Franke, J. Ibid. 1985, 24, 219-221. (c) Diederich, F.; Carcanague, D. R. Ibid. 1990, 29, 769-771. (d) See ref 6g,h. (e) Odashima, K.; Kawakami, H.; Miwa, A.; Sasaki, I.; Koga, K. Chem. Pharm. Bull. 1989, 37, 257-25

<sup>(8)</sup> Wilcox, C. S.; Cowart, M. D.; Sucholeiki, I.; Bukownik, R. R.; Lynch, (a) Wilcox, C. S., Cowar, M. D., Suchrotek, H., Busternik, K. K., Dillow, M. K., S. K., S.

Lipophilic Molecular Cleft. M.A. Dissertation, University of Texas at Austin, 1987. (c) Unpublished work of T. H. Webb, University of Pittsburgh.

<sup>(10)</sup> Crystals of 4 have not provided useful diffraction data. The absolute configuration of host 1 has recently been determined.9c